Assessment and Assignment Guidance in the GAI Era

CATL is often asked questions about how to approach assessments in the wake of easy access to generative artificial intelligence (GAI). We hope to crowd-source suggestions and examples from our own instructors so that we can build a repository of work from the UWGB community in Canvas. Please take our GAI Assignment Repository survey if you have any ideas or assignment samples that you are willing to contribute. We will collect results and share them once we have a critical mass. In the meantime, please feel free to use these resources from other institutions or professional organizations.

Deterring the Use of GAI

One of the most frequent concerns expressed by instructors is that students will simply use GAI to complete their assignments. It makes very good sense to type your own assignment prompt into Copilot or another GAI tool to see if it can complete the assessment – and modify the assignment if it can. Although these are not perfect strategies, multiple authors have suggested the following mitigation strategies:

  • Be very clear with students about your GAI policy and talk with them about the reasons for it and for completing their work independently. Carleton College has an interesting site aimed at a student audience about GAI use and evolving understandings of academic integrity that you could use to frame a discussion with your class.
  • Use shorter, more frequent assessments that build on each other to reduce the motivation to use GAI that can come with a small number of high-stakes/point assignments.
  • Scaffold your assignments such that each one builds on another.
  • Create assessments that involve integration of material from class (which GAI does not have access to) with other sources.
  • Require some element of reflection on the learning experience or completing the assignment.
  • Ask students to submit outlines, drafts, or save their document history in Word or Google Docs to show the evolution of a paper or project.
  • Consider the use of oral presentations, including question and answer, as a method for demonstrating understanding.
  • Employ in-class writing assignments such as Minute Papers for face-to-face courses.

The Office of Digital Learning at UN-Reno has created a more detailed document with strategies for re-designing assessments in the GAI era.

Teaching About the Use and Ethics of GAI

Some instructors are seeking strategies for teaching students about GAI and how to use it, as well as about related issues, such as the ethics of use. Instructors from the University of Central Florida collected more than 60 assignments related to GAI, including the teaching of prompt engineering. The New School has a shorter, more direct page of instructions for prompt creation. Co-Intelligence author Dr. Ethan Mollick and collaborator Dr. Lilach Mollick have created an extensive paper that outlines seven complex ways to use GAI in education, and they include sample prompts and a discussion of the potential risks of their ideas. Finally, as just one example of teaching about the ethics of AI use, consider this assignment designed, in part, to teach about cultural bias in GAI.

Creating Assessments that Make Use of GAI

Finally, there are instructors looking for creative assignments that use GAI as an intentional tool in an assessment to facilitate student learning. Numerous universities and organizations have assembled collections of such assignments, including the following:

Remember, we hope to create a collection of examples from UWGB instructors. Please complete our survey today to share your contribution with your colleagues!

Generative Artificial Intelligence (GAI) and Acknowledging or Citing Use

UW-Green Bay’s libraries have an excellent student-facing webpage on how to acknowledge or formally cite the use of GAI. This blog is intended to supplement that resource with information more specific to instructors. Professors will be vital in helping students understand both the ethics and practicalities of transparency when employing GAI tools in our work. Please keep the following caveats in mind as you explore this resource.

  • As with all things GAI, new developments are rapid and commonplace, which means everyone needs to be on the alert for changes.
  • Instructors are the ones who decide their specific course policies on disclosing or citing GAI. The information below provides some options for formatting acknowledgments, but they are not exhaustive.
  • Providing acknowledgment for the use of GAI may seem straightforward, but it is actually a very nuanced topic. Questions about copyright implications, whether AI can be considered an “author,” and the ethics of relationships between large AI entities and publishing houses are beyond the scope of this blog. Know, though, that such issues are being discussed.
  • Please remember that it is not only important for students to acknowledge or cite the use of GAI. Instructors need to do so with their use of it, as well.

Acknowledgment or Citation of GAI

There is a difference between acknowledging the use of GAI with a simple statement at the end of a paper, requiring students to submit a full transcript of their GAI chat in an appendix, and providing a formal citation in APA, MLA, or Chicago styles.

  • UWGB Libraries have some excellent acknowledgment examples on their page.
  • UWM’s library page provides basic templates for citations intended to be consistent with APA, MLA, and Chicago styles.
  • There are also lengthy blog explanations and detailed citation examples available directly from APA, MLA, and the Chicago Manual of Style.

Regardless of the specific format being used, the information likely to be required to acknowledge or cite GAI includes:

  1. The name of the GAI tool (e.g., Copilot, ChatGPT)
    Microsoft Copilot, OpenAI’s ChatGPT 4.o (May 23, 2024 version), etc.
  2. The specific use of the GAI tool
    “to correct grammar and reduce the length in one paragraph of a 15-page paper”
  3. The precise prompts entered (initial and follow-up)
    “please reduce this paragraph by 50 words and correct grammatical errors”; follow-up prompt: “now cut 50 words from this revised version”
  4. The specific output and how it was used (perhaps even a full transcript)
    “specific suggestions, some of which were followed, of words to cut and run-on sentences to revise”
  5. The date the content was created
    August 13, 2024

Ultimately, instructors decide what format is best for their course based on their field of study, the nature and extent of GAI use permitted, and the purpose of the assignment. It is important to proactively provide specific information to students about assignments. Professors who are particularly interested in whether students are using GAI effectively may focus on the prompts used or even ask for the full transcript of a session. If, in a specific assignment, the instructor is more interested in students learning their discipline’s citation style, then they might ask for a formal citation using APA format. Although the decision is up to the professor, they should tell students in advance and strongly encourage them to have separate Word documents for each of their classes in which they save any GAI chats (including prompts and output) and their date. That way they have records to go back to; If they use Copilot with data protection, it does not save the content of sessions.

What Messages Might I Give to Students about Using, Disclosing, or Citing GAI?

Instructors should consider how they will apply this information about acknowledgments and citations in their own classes. CATL encourages you to do the following in your work with students.

  1. Decide on a policy for acknowledging/citing GAI use for each course assignment and communicate it in your syllabus and any applicable handouts, Canvas pages, etc.
  2. Reinforce for students that GAI makes mistakes. Students are ultimately responsible for the accuracy of the work they submit and for not using others’ intellectual property without proper acknowledgment. They should be encouraged to check on the actual existence of any sources cited by a GAI tool because they are sometimes “hallucinated,” not genuine.
  3. Talk to students about the peer review and publication processes and what those mean for source credibility compared to the “scraping” process used to train GAI models.
  4. Explain that GAI is not objective. It can contain bias. It has been created by humans and trained on data primarily produced by humans, which means it can reflect their very real biases.
  5. Communicate that transparency in GAI use is critical. Instructors should be clear with their students about when and how they may use GAI to complete specific assignments. At the same time, one of the best ways instructors can share the importance of transparency and attribution is through modeling it themselves (e.g., an instructor disclosing that they used Copilot to create a case study for their course and modeling how to format the disclosure).
  6. Remind students that even if the specific format varies, the information they are most likely to have to produce for a disclosure/acknowledgment or citation is: a) the name of the tool, b) the specific use of the tool, c) the prompts used, d) the output produced, and e) the date of use.
  7. Finally, encourage students to copy and paste all GAI interaction information, including an entire chat history, into a Word document for your course and to save it for future reference. One advantage of Microsoft Copilot with data protections is that it does not retain chat histories. That’s wonderful from a security perspective, but it makes it impossible to re-create that information once a session has ended. They should also know that even GAI tools that save interactions and use them to train their model are unlikely to re-produce a session even if the same prompt is entered.

Indicating Generative AI Assignment Permissions with the Traffic Light Model (Red Light, Yellow Light, Green Light)

CATL recommends using the red, yellow, and green light approach to clearly label what level of generative AI (GAI) use is permitted for each of your course assignments. The traffic lights will be useful, but students will also need precise written instructions to supplement them on each assignment’s instructions. In general, you should include: a) whether GAI use is permitted, b) what tasks it can (e.g., brainstorming topic ideas) and can’t (e.g., creating text) be used on, c) how it should be cited (if applicable), and d) a rationale for why it can/can’t be used. We have provided brief examples below, but keep in mind that lengthy assignments that involve complex GAI use might require much more detailed instructions of even a page or more. Note that the text in brackets [ ] is designed to provide some examples of words that might go there; you will need to choose and insert your own text.

Red Light Approach: No GAI Use Permitted

A red traffic light illuminated with an “x” symbol.Collaboration with any GAI tool is forbidden for this activity. This assignment’s main goal is to develop your own [e.g., writing, coding] skills. Generative AI tools cannot be used because doing so will not be helpful to your own skill development and confidence in those abilities.

Yellow Light Approach: GAI Use Permitted for Specific Tasks and/or Using Specific Tools

A yellow traffic light illuminated with an “!” symbol.You may use the GAI tool Copilot – and only Copilot – for specific tasks in this assignment, but not for all of them. You may use GAI tools to [brainstorm a research topic], but not for [writing or editing your research proposal]. You will need to properly cite or disclose your generative AI using [e.g., APA Style]. If you are unsure or confused about what GAI use is permitted, please reach out to me.

OR

You may use GAI tools on this assignment to [e.g., create the budget for your grant proposal], but not to do anything else, such as create text, construct your persuasive arguments, or edit your writing. You will need to properly cite or disclose your generative AI using [e.g., APA Style]. Although other tools are permitted, you are strongly encouraged to use Microsoft Copilot with data protections for reasons of security, equity, and access to GBIT technical support.

Green Light Approach: All GAI Use Permitted

A green traffic light illuminated with a checkmark symbol. You are encouraged to use GAI tools for this assignment. Any generative AI use will need to be disclosed and cited using the methods described in your syllabus. For this assignment, you may use GAI tools to [e.g., brainstorm, create questions, text, or code, organize information, build arguments, and edit]. You will need to properly cite or disclose how/where you used generative AI using [e.g., APA Style]. If you would like feedback on your GAI tool use or have questions, please reach out to me.

 

Outlining When and How Students May Use GAI

An instructor may want to outline specific tasks when using the traffic light approach. Consider some of the examples below.

You may use AI to “[task(s)]”, but not to “[task(s)]”:

  • Analyze Data
  • Brainstorm Ideas, Thesis Statements, etc.
  • Build Arguments
  • Conduct Peer Review
  • Create Discussion Posts
  • Create Questions
  • Create Study Guides
  • Develop Thesis Statements
  • Edit Content
  • Format Documents/Presentations
  • Generate Citations
  • Generate New Text, Code, Art, etc.
  • Generate Research Questions
  • Generate Samples/Examples
  • Organize Information
  • Provide Explanations/Definitions
  • Research a Topic
  • Search for Research Articles
  • Summarize Text/Literature/Article
  • Write Self-Reflections

Learn More

Explore even more CATL resources related to AI in education:

If you have questions, concerns, or ideas specific to generative AI tools in education and the classroom, please email us at catl@uwgb.edu or set up a consultation!

How Will Generative AI Change My Course? (GAI Checklist)

With the growing prevalence of generative AI applications and the ongoing discussions surrounding their integration in higher education, it can be overwhelming to contemplate their impact on your courses, learning materials, and field. As we navigate these new technologies, it is crucial to reflect on how generative AI can either hinder or enhance your teaching methods. CATL has created a checklist designed to help instructors consider how generative artificial intelligence (GAI) products may affect your courses and learning materials (syllabi, learning outcomes, and assessment).

Each step provides guidance on how to make strategic course adaptations and set course expectations that address these tools. As you go through the checklist, you may find yourself revisiting previous steps as you reconsider your course specifics and understanding of GAI.

Checklist for Assessing the Impact of Generative AI on your Course

View an abridged, printable version of the checklist to work through on your own.

Step One: Experiment with Generative AI

  • Experiment with GAI tools. Test Copilot (available to UWGB faculty, staff, and students) by inputting your own assignment prompts and assessing its performance in completing your assignments.
  • Research the potential benefits, concerns, and use cases regarding generative AI to gain a sense of the potential applications and misuses of this technology.

Step Two: Review Your Learning Outcomes

  • Reflect on your course learning outcomes. A good place to start is by reviewing this resource on AI and Bloom’s Taxonomy which considers AI capabilities for each learning level. Which outcomes lend themselves well to the use of generative AI and which outcomes emphasize your students’ distinctive human skills? Keep this in mind as you move on to steps three and four, as the way students demonstrate achieved learning outcomes may need to be revised.

Step Three: Assess the Extent of GAI Use in Class

  • Assess to what extent your course or discipline will be influenced by AI advancements. Are experts in your discipline already collaborating with GAI tools? Will current or future careers in your field work closely with these technologies? If so, consider what that means about your responsibility to prepare students for using generative AI effectively and ethically.
  • Determine the extent of usage appropriate for your course. Will you allow students to use GAI all the time or not at all? If students can use it, is it appropriate only for certain assignments/activities with guidance and permission from the instructor? If students can use GAI, how and when should they cite their use of these technologies (MLA, APA, Chicago)? Be specific and clear with your students.
  • Revisit your learning outcomes (step two). After assessing the impact of advancements in generative AI on your discipline and determining how the technology will be used (or not used) in your course, return to your learning outcomes and reassess if they align with course changes/additions you may have identified in this step.

Step Four: Review Your Assignments/Assessments

  • Evaluate your assignments to determine how AI can be integrated to support learning outcomes. The previous steps asked you to consider the relevance of AI to your field and its potential impact on students’ future careers. How are professionals in your discipline using AI, and how might you include AI-related skills in your course? What types of skills will students need to develop independently of AI, such as creativity, interpersonal skills, judgement, metacognitive reflection, and contextual reasoning? Can using AI for some parts of an assignment free up students’ time to focus more on the parts that develop these skills?
  • View, again, this resource on AI capabilities versus distinctive human skills as they relate to the levels of Bloom’s Taxonomy.
  • Define AI’s role in your course assignments and activities. Like step three, you’ll want to be clear with your students on how AI may be used for specific course activities. Articulate which parts of an assignment students can use AI assistance for and which parts students need to complete without AI. If AI use doesn’t benefit an assignment, explain to your students why it’s excluded and how the assignment work will develop relevant skills that AI can’t assist with. If you find AI is beneficial, consider how you will support your students’ usage for tasks like editing, organizing information, brainstorming, and formatting. In your assignment instructions, explain how students should cite or otherwise disclose their use of AI.
  • Apply the TILT framework to your assignments to help students understand the value of the work and the criteria for success.

Step Five: Update Your Syllabus

  • Add a syllabus statement outlining the guidelines you’ve determined pertaining to generative AI in your course. You can refer to our syllabus snippets for examples of generative AI-related syllabi statements.
  • Include your revised or new learning outcomes in your syllabus and consider how you will emphasize the importance of those course outcomes for students’ career/skill development.
  • Address and discuss your guidelines and expectations for generative AI usage with students on day one of class and put them in your syllabus. Inviting your students to provide feedback on course AI guidelines can help increase their understanding and buy-in.

Step Six: Seek Support and Resources

  • Engage with your colleagues to exchange experiences and practices for incorporating or navigating generative AI.
  • Stay informed about advancements and applications of generative AI technology.

Checklist for Assessing the Impact of Generative AI on Your Course © 2024 by Center for the Advancement of Teaching and Learning is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Want More Resources?

Visit the CATL blog, The Cowbell, for more resources related to generative AI in higher education.

Need Help?

CATL is available to offer assistance and support at every step of the checklist presented above. Contact CATL for a consultation or by email at CATL@uwgb.edu if you have questions, concerns, or perhaps are apprehensive to go through this checklist.

 

 

Dispelling Common Instructor Misconceptions about AI

Staying updated on the rapidly evolving world of generative artificial intelligence (GAI) can be challenging, especially with new information and advancements seemingly happening in rapid succession. As tools like ChatGPT have taken the world by storm, many educators have developed divergent (and strong!) views about these technologies. It can be easy to get swept up in the hype or the doom and gloom of the media storm – overselling or underselling these technologies drives clicks, after all – but it also leads to the spread of misinformation as we try to cope with all the change.

In a previous blog post, we introduced generative AI technologies, their capabilities, and potential implications for higher education. Now, in this post, we will dig deeper into some important considerations regarding AI by exploring common misconceptions that some instructors may hold. While some educators are enthusiastic about incorporating AI into their teaching methodologies, others may harbor doubts, apprehensions, or simply lack interest in exploring these tools. Regardless of one’s stance, it is crucial that we all develop an understanding of how these technologies work so we can have healthy and productive conversations about GAI’s place in higher education.

Misconception #1: GAI is not relevant either to my discipline or to my work.

Reality: GAI is already integrated into many of the tools we use daily and will continue to become more prevalent in our work as technology evolves. 

Whether we teach nursing, accounting, chemistry, or writing, we use tools like personal computers, email, and the internet nearly every day. Generative AI is proving to be much the same, and companies like Google, Microsoft, and Meta are already integrating it into many of the tools we already use. Google now provides AI-generated summaries at the top of search results. Microsoft Teams offers a feature for recapping meetings using GAI and is experimenting with GAI-powered analytics tools in Excel and Word. Meta has integrated AI into the search bar of Instagram and Facebook. Canvas may have some upcoming AI integrations as well. Some of us may wish to put the genie back in the bottle, but this technology is not going away.

Misconception #2: The content that GAI produces is not very good, so I don’t have to worry about it.

Reality: GAI outputs will continue to evolve, improve, and become harder to discern from human-created content.

A lot of time, energy, and money is being invested into generative AI, which means we can expect that AI-generated content will continue to advance rapidly. In fact, many GAI tools are designed to continually progress and improve upon previous models. Although identifying some AI-generated content may be easy now, we should assume that this will only become increasingly difficult to discern as the technology evolves and becomes better at mimicking human-created content. Currently, generative AI tools have been described as a “C average” student, but with additional development and thoughtful prompting, it may be capable of A-level work.

Misconception #3: I don’t plan on using AI in my courses, so I don’t need to learn about it or talk about it with my students or colleagues.

Reality: All instructors should engage in dialogue on the impact of AI in education and/or in their field.

Even if you don’t plan on using AI in your courses, it is still important to learn about these technologies and consider their impact on your discipline and higher education. Consider discussing AI technology and its implications with your department, colleagues, and students. In what ways will generative AI tools change the nature of learning outcomes and even careers in your discipline? How are other instructors responding? In what ways can instructors support each other as they each grapple with these questions?

Not sure where to start? Use CATL’s checklist for assessing the impact of generative AI on your course to understand how this technology might affect your students and learning outcomes, regardless of if you plan to use AI in your courses or not.

Misconception #4: I’m permitting/prohibiting all AI use in my course, so I don’t need to provide further instructions for my students.

Reality: All instructors should clearly outline expectations for students’ use/non-use of AI in the course syllabus and assignment directions.

Whether you have a “red-light,” “yellow-light,” or “green-light” approach to AI use in your class, it is important to provide students with clear expectations and guidelines. Be specific in your syllabi and assignment descriptions about where and when you will allow or prohibit the use of these tools or features. Make sure your guidelines are consistent with official guidance from the Universities of Wisconsin and UW-Green Bay, communications from our Provost’s Office, and any additional recommendations from your chair or dean. CATL has developed syllabus snippets on generative AI usage that you are welcome to use, adapt, or borrow from for inspiration. Be as transparent as possible and recognize that students will be encouraged to check with you if they cannot find affirmative permission to use GAI in a specific way.

Misconception #5: All my students are already using AI and know how it works.

Reality: Many students do not have much experience with this technology yet and will need guidance on how to use it effectively and ethically. Students also have inequitable access.

While there is certainly a growing number of students who have started experimenting with GAI, instructors may be surprised at how many students have used these tools little if at all. Even when students do have experience using GAI, we cannot assume that they understand how to use it effectively or know when its use is ethically problematic. Furthermore, some students have access to high-speed Internet, a personal computer, and paid access to their favorite GAI tool. Other students may have no or spotty web access and may be relying on a cell phone as their only means of working on a course.

If you are permitting students to use GAI tools in your class, provide them with guidance on how they can partner with these tools to meet course outcomes, rather than using them as a shortcut for critical thinking. Encourage students to analyze the outputs produced by GAI and make assessments about where these tools are useful and where they fall short (e.g., Are the outputs accurate? Are they specific and relevant? What may be missing?). Classes should also engage in discussions about the importance of citing or disclosing the use of AI. UWGB’s librarians are a great resource if you would like help developing a lesson plan around information literacy, GAI “hallucinations,” or GAI citations in specific styles, such as APA. In terms of equitable access to GAI, while it may not be possible to control for all variables, one way you can help level the playing field is by having your students use Microsoft Copilot through their UWGB accounts. You could also have them document how they have used the tool (e.g., what prompts they used).

Misconception #6: If I use AI-generated content in my courses, I am not responsible for inaccuracies in the output.

Reality: If you use AI-generated content to develop your courses, you are ultimately responsible for verifying the accuracy of the information and providing credible sources.

GAI is prone to mistakes; therefore, it is up to human authors and editors to take responsibility for the content generated in part or whole by AI. Exercise caution when using GAI tools because the information provided by them may not always be accurate. GAI developers like OpenAI are upfront about GAI’s potential to hallucinate, so it’s best to vet outputs against trusted sources. Be sure to also watch out for potential bias that can appear in outputs, as these tools are trained on human-generated data that can contain biases. If you use GAI to develop course materials, you should disclose or cite usage in the same format your students would use too. It is also best practice to talk about these issues with students. They are also ultimately responsible for the content they submit, and they should know, for example, that GAI grading that appears “unbiased” actually carries with it the biases of those who trained it.

Misconception #7: I can rely on AI detection tools to catch students who are using GAI inappropriately.

Reality: AI detection tools are unreliable, subject to bias, and provide no meaningful evidence for cases of academic dishonesty.

As research continues to come out about AI detectors, one thing is certain: they are unreliable at best. AI writing can easily fly under the radar with careful prompting (e.g., “write like a college sophomore and vary the sentence length” or “write like these examples”). Even more concerning is the bias present in AI detection, such as the disproportionally high rate of false positives for human writing by non-native English writers. And unlike plagiarism detection, which is easy to verify and understand, the process of AI detection is a black box – instructors receive a score, but not a rationale for how the tool made its assessment. These different concerns have led many universities to ban their use entirely.

Instructors are encouraged to consider ways of fostering academic integrity and critical thinking rather than trying to police student behavior with AI detectors. If you’d still like to try using an AI detection tool, know that these reports are not enough to constitute evidence of academic misconduct and should be treated as only a signal that additional review may be necessary. In most cases, the logical next step will be an open, non-confrontational conversation with the student to learn more about their thought process and any tools they may have involved. Think, too, about the potential consequences of falsely accusing a student of academic misconduct. The threat of failing an assignment, or even a course, could have an impact on trust with you or their department, eligibility for a scholarship keeping them in school, and so on. The unreliability and lack of transparency in AI detection can lead to increased anxiety even among students who are not engaging in academic misconduct.

Misconception #8: I can input any information into an AI tool as long as it is relevant to my job duties.

Reality: Instructors need to exercise caution when handling student data to avoid violating UWGB policy and federal law (e.g., privacy laws such as FERPA).

Many GAI tools are trained on user inputs, so we must exercise caution when considering what information is appropriate to use in a prompt. Even when a product claims that it doesn’t retain prompt information, there is still potential for data breaches or bugs that invertedly put users’ data at risk. It is crucial that you never put students’ personally identifiable information (PII) into an AI-powered tool, as this may violate the Family Education Right to Privacy Act (FERPA). This also goes for work emails and documents that may contain sensitive information.

Misconception #9: AI advancement means the end of professors/teaching/higher education.

Reality: AI has many potential applications related to education, but CATL does not see them replacing human-led instruction.

Don’t get caught up in the smoke. Although the capabilities of generative AI can seem scary or worrying at first, that is a natural reaction to any major technological breakthrough. Education has experienced many shifts from technological advancements in the past, from the calculator to the internet, and has adapted and evolved alongside these technologies. It will take some time for higher education to embrace AI, but we can do our part by continuing to learn more about these technologies and asking important questions about their long-term impacts. Do you have questions or concerns about how AI will impact your course materials and assessments? Schedule a consultation with us – CATL is here to help!