
# Bus Adm 216: Linear Regression Activity (Car insurance claims)

 $\supset$ 

**(**)

| ataset – variable description: |     |         |         |        |                |  |  |  |
|--------------------------------|-----|---------|---------|--------|----------------|--|--|--|
| Descriptive Statistics         |     |         |         |        |                |  |  |  |
|                                | Ν   | Minimum | Maximum | Mean   | Std. Deviation |  |  |  |
| Policyholder age               | 128 | 1       | 8       | 4.50   | 2.300          |  |  |  |
| Vehicle group                  | 128 | 1       | 4       | 2.50   | 1.122          |  |  |  |
| Vehicle age                    | 128 | 1       | 4       | 2.50   | 1.122          |  |  |  |
| Average cost of claims         | 123 | 11      | 850     | 231.14 | 117.048        |  |  |  |
| Number of claims               | 128 | 0       | 434     | 69.86  | 91.852         |  |  |  |
| Valid N (listwise)             | 123 |         |         |        |                |  |  |  |

# Model 1a - Average cost of Claims (using entire dataset)



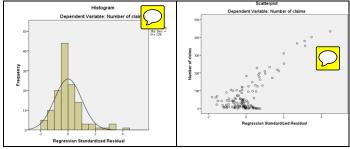
Model Summary

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .684 <sup>a</sup> | .467     | .454                 | 86.484                        |

a. Predictors: (Constant), Vehicle age, Policyholder age, Vehicle group

|   | NO | V/A d |  |
|---|----|-------|--|
| A | ΝU | VA    |  |
|   |    |       |  |

| Model |            | Sum of<br>Squares | df  | Mean Square | F      | Sig.              |
|-------|------------|-------------------|-----|-------------|--------|-------------------|
| 1     | Regression | 781375.850        | 3   | 260458.617  | 34.823 | .000 <sup>b</sup> |
|       | Residual   | 890050.801        | 119 | 7479.418    |        |                   |
|       | Total      | 1671426.650       | 122 |             |        |                   |


a. Dependent Variable: Average cost of claims

b. Predictors: (Constant), Vehicle age, Policyholder age, Vehicle group

### Coefficients<sup>a</sup>

| Mode |                                               | Unstandardize<br>B | d Coefficients<br>Std. Error | Standardized<br>Coefficients<br>Beta | t      | Sig. |  |
|------|-----------------------------------------------|--------------------|------------------------------|--------------------------------------|--------|------|--|
| Mode |                                               | -                  |                              | 5010                                 |        | -    |  |
| 1    | (Constant)                                    | 321.335            | 29.822                       |                                      | 10.775 | .000 |  |
|      | Policyholder age                              | -11.773            | 3.462                        | 228                                  | -3.400 | .001 |  |
|      | Vehicle group                                 | 38.662             | 7.074                        | .367                                 | 5.465  | .000 |  |
|      | Vehicle age                                   | -53.382            | 7.074                        | 506                                  | -7.546 | .000 |  |
| a.   | a. Dependent Variable: Average cost of claims |                    |                              |                                      |        |      |  |

# Model 1b - Number of Claims (using entire dataset)



| Model Summary |
|---------------|
|---------------|

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .641 <sup>a</sup> | .411     | .397                 | 71.340                        |

a. Predictors: (Constant), Vehicle age, Vehicle group,

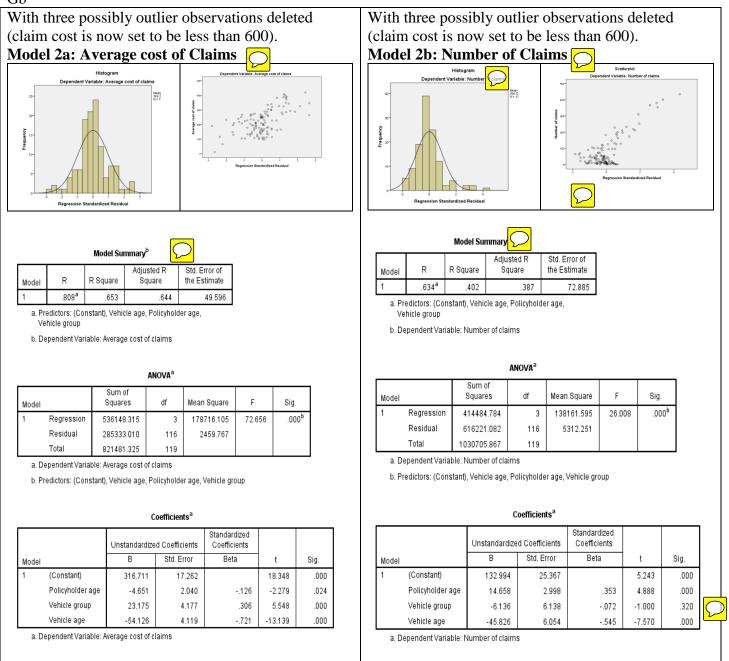
Policyholder age

#### ANOVA<sup>a</sup>

| Mod | lel        | Sum of<br>Squares | df  | Mean Square | F      | Sig.              |
|-----|------------|-------------------|-----|-------------|--------|-------------------|
| 1   | Regression | 440379.262        | 3   | 146793.087  | 28.843 | .000 <sup>b</sup> |
|     | Residual   | 631092.207        | 124 | 5089.453    |        |                   |
|     | Total      | 1071471.469       | 127 |             |        |                   |

a. Dependent Variable: Number of claims

b. Predictors: (Constant), Vehicle age, Vehicle group, Policyholder age


### Coefficients<sup>a</sup>

|       |                  | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |      |               |
|-------|------------------|-----------------------------|------------|------------------------------|--------|------|---------------|
| Model |                  | В                           | Std. Error | Beta                         | t      | Sig. |               |
| 1     | (Constant)       | 127.263                     | 24.305     |                              | 5.236  | .000 |               |
|       | Policyholder age | 14.289                      | 2.752      | .358                         | 5.192  | .000 |               |
|       | Vehicle group    | -5.500                      | 5.640      | 067                          | 975    | .331 | $\mathcal{S}$ |
|       | Vehicle age      | -43.181                     | 5.640      | 528                          | -7.656 | .000 |               |

a. Dependent Variable: Number of claims



# Gb



# Questions:

Comment on the regression assumptions in all the four models.

Write the regression equations from models 2a and 2b.

Comment whether deleting the three outlier observations nelped predict average cost of claims better or not?

Interpret coefficient of determination 2a and 2b.

Which one is better -1a or 2a? Why?

Which one is better – 1b or 2b? Why?

Using 2a, compute estimated cost of claims if the age group is 6, vehicle group is 2 and the vehicle age group is 4. Using 2b, compute estimated number of claims if the age group is 6, vehicle group is 2 and the vehicle age group is 4.

Use F table to find the p values here.

Use T table to find the p values here.

- Interpret f test in 2a and 2b. Find the p value of f test in 2a.
  - nd the p value of 1 test in 2a.

Find the p value of all the t values in 2a. What are the sample sizes in 1a and 2a?

What are the sample sizes in 1a and 2a? Why do you think vehicle group is significantly related to cost of claims but is not related to the number of claims?